Gold-polymetallic deposits in Greece: Genetic types and economic perspectives

Arvanitidis N.D.\(^1\), Michael C.\(^2\), Papavasileiou K.\(^3\) and Perantonis G.\(^4\)

\(^1\)Institute of Geology and Mineral Exploration, IGME, Regional Division of Central Macedonia, Fragon 1, 54626 Thessaloniki, Greece, narvanitidis@thes.igme.gr
\(^2\)Institute of Geology and Mineral Exploration, IGME, Regional Division of East Macedonia-Thrace, Mprokouni 6, 67100 Xanthi, Greece, conmichael@in.gr
\(^3\)Institute of Geology and Mineral Exploration, IGME, S. Loui 1, Olympic village, 13677 Acharnes, Athens, Greece, dirgen@igme.gr
\(^4\)Hellas Gold S.A., 63082 Stratoni, Chalkidiki, Greece, GPerantonis@hellas-gold.com

Abstract

Greece's geology favours a potent and dynamic use of mineral resources, which became a major incentive of the country's mining business, and economic and social growth. Among the Non-Energy Metallic Minerals commodities, base and precious metals, in particular zinc, lead, copper gold, and silver are becoming an increasingly important and rapidly growing target of the mining industry. In NE Greece, where most of the potential resources and feasible deposits are hosted, gold-polymetallic mineralizations occur in a wide range of genetic types comprising magmatic, hypothermal / mesothermal, epithermal and supergene mineralization types. The magmatic porphyry copper type deposits and mineralizations show economic gold grades (e.g. Skouries, Fisoka, Pontokerasia), the hypothermal / mesothermal manto-type polymetallic sulphides form high-grade gold ores (e.g. Olympias, Mavres Petres, Piavitsa, Thermes, Pangeo, Farasino) and the epithermal gold systems lead to potential high-sulphidation mineralizations (e.g. Konos, Perama, Kirki, Pefka). Proven reserves amount to porphyry gold and copper of 3.9 Moz and 0.8 Mt, respectively, manto-type gold of 3.6 Moz, lead + zinc of 1.6 Mt and silver of 66 Moz, as well as more than 2.0 Moz epithermal gold.

The genetic link between porphyry coppers and large polymetallic manto style sulphide deposits can be incorporated into regional exploration strategies in a complex metamorphic terrain of schists, gneisses and marbles, whereas the epithermal type deposits were emplaced within a broad volcanic belt, which developed first in Bulgaria and then moved south through northern Greece to the region of Thrace. The epithermal gold mineralization occurs in hydrothermal breccia zones, related to volcanic rocks of andesitic, dacitic or shoshonitic composition as well as hosted by sedimentary rocks. All previous types of sulphide minerals (particularly those hosted by Rhodope and Serbo-Macedonian marbles) were overimposed by post-Pliocene co-active supergene oxidation and karstification processes (e.g. Angistro, Menikio). All the main types of gold mineralization are linked to plate tectonic movements during the Tertiary. From the global metallogenetic point of view the post-Alpine Tertiary geodynamic systems in SE Europe are potential in producing high-grade ore deposits of base and precious metal sulphide minerals.

The research leading to these results has received funding from the European Community's Seventh Framework Programme ([FP7/2007-2013] [FP7/2007-2011]) under grant agreement n° 228559. This publication reflects only the author’s view, exempting the Community from any liability.